Friday, August 8, 2008






پمپ و انواع آن




پُمپ یا تُلُمبه وسیله‌ای مکانیکی برای انتقال مایعات است که با افزایش فشار جریان آن، امکان جابجایی مایعات را به ارتفاعی بالاتر (با افزایش هد) یا حتی پایین دست (معمولاً حوضچه یا مخزن) فراهم می‌آورد.
پمپ کاربردهای فراوان در صنعت و حتی در وسایل نقلیه دارد. مانند پمپ بنزین یا پمپ آب
خودرو تا پمپ‌های بزرگ برای پر کردن حوضچه‌های تعمیر کشتی.
تعریف پمپ: به طور کلی پمپ به دستگاهی گفته می شود که انرﮊی مکانیکی را از یک منبع خارجی اخذ و به سیال مایعی که از آن عبور می کند، انتقال می دهد. در نتیجه انرﮊی سیال پس از خروج از این دستگاه (پمپ) افزایش می یابد. در پمپ ها تغییرات انرﮊی سیال همواره به صورت تغییر فشار سیال مشاهده می گردد. از پمپها برای انتقال سیال به یک ارتفاع معین و یا جا به جایی آن در یک سیستم لوله کشی و یا هیدرولیک استفاده می نمایند. به عبارت کلی تر از پمپ برای انتقال سیال از یک نقطه به نقطه دیگر استفاده می کنند. پمپها دارای انواع مختلفی هستند که هرکدام دارای کاربرد خاصی می باشند. مهم‌ترین پمپهایی که در این واحد استفاده شده اند عبارت‌اند از:
1. پمپهای سانتریفوﮊ. 2. پمپهای رفت و برگشتی. 3. پمپهای چرخ دنده ای.
پمپهای سانتریفوﮊ: این پمپها از نوعی می باشند که انتقال انرﮊی از آنها به سیال به طور دائمی انجام می پذیرد. پمپهای سانتریفوﮊ معمولاً نیروی محرکه خود را از طریق یک الکترو موتور (موتور الکتریکی) دریافت می کنند. انتقال نیروی محرکه از موتور به پمپ از طریق یک محور به نام شَفت منتقل می شود. شَفت موتور به وسیله نوعی تجهیزات مکانیکی به نام کوپلینگ به شَفت پمپ متصل شده است. به این ترتیب انتقال نیرو به راحتی از طریق شفت موتور الکتریکی به شفت پمپ منتقل می گردد.
پمپ های سانتریفوﮊ دارای یک محفظه هستند که حلزونی شکل است و پوسته یا کِیسینگ نامیده می شود و درون آن یک یا چند چرخ قرار دارند که روی یک محور (شفت) نصب شده اند. هر چرخ مجهز به تعدادی پره می باشد. انتقال انرﮊی به سیال در این قسمت انجام می شود. برای اینکه از محل خروج شفت از کِیسینگ پمپ سیالی خارج نشود و اصطلاحا نشتی به خارج نداشته باشیم از ابزاری به نام مکانیکال سیل استفاده شده است. نکته بسیار مهم در مورد این نوع پمپها هواگیری یا پرایم کردن پمپ پیش از روشن کردن آنها می باشد. یعنی پس از لاین آپ نمودن پمپ و اطمینان از ورود سیال به داخل پمپ، باید از خروج کامل هوا یا گاز حبس شده در داخل پمپ نیز اطمینان حاصل نمود. از این نوع پمپها در ابعاد و اندازه های مختلف برای مصارف گوناگون ساخته می شوند.
پمپهای رفت وبرگشتی: این نوع پمپها وسایلی هستند که انتقال انرﮊی از آنها به سیال به صورت پریودیک و دوره ای می باشد. نیروی محرکه این نوع پمپها نیز غالبا توسط موتورهای الکتریکی تامین می گردد. در این نوع پمپها حرکت چرخشی میل لنگ تبدیل به حرکت رفت و آمدی پیستونی در یک سیلندر می شود. با عقب رفتن پیستون در سیلندر ایجاد مکش شده و در نتیجه مایع از طریق یک شیر ورودی داخل سیلندر می گردد. با حرکت پیستون به طرف جلو دریچه ورودی بسته و مایع از طریق شیر خروجی به خارج هدایت می گردد. شیرهای ورودی و خروجی یکطرفه بوده و طوری ساخته شده اند که در مراحل رفت و آمد پیستون، از ورود مایع داخل سیلندر به قسمت کم فشار و بالعکس ممانعت شود. اگر بجای پیستون، پلانجری در داخل سیلندر رفت و آمد کند در این حالت به آن پمپ پلانجری می گویند. در ضمن چنانچه پلانجر دیافراگمی را حرکت دهد پمپ از نوع دیافراگمی است. فرق میان پیستون وپلانجر در این است که طول سر پیستون کوتاه تر از مسافتی است که پیستون درون سیلندر طی می نماید، در حالی که طول پلانجر بیشتر از طول مسافت طی شده توسط آن در داخل سیلندر می باشد. از طرفی در پمپهای پیستون از حلقه یا رینگی جهت آب بندی پیستون و سیلندر استفاده شده است که روی بدنه پیستون قرار گرفته و همراه آن حرکت می کند، در حالیکه در پمپهای پلانجری این رینگ روی سیلندر قرار دارد و ثابت است. این پمپها معمولاً کم ظرفیت هستند ولی فشار خروجی سیال را می توانند تا مقدار زیادی افزایش دهند. بنابراین از این پمپها در جاهایی که نیاز به جا به جا کردن سیالی با حجم کم ولی فشار بالا می باشد استفاده می کتتد. در ضمن باید به این نکته نیز توجه داشت که جریان سیال در این پمپها به صورت غیر یکنواخت می باشد. نکته بسیار مهم در مورد این پمپ ها آن است که هرگز نباید آنها را در حالیکه شیر خروجی پمپ (دیسچارج پمپ) بسته است روشن نمود
پمپهای چرخ دنده ای یا گی یِر پمپ: این پمپها نوعی از پمپهای گردشی یا روتاری می باشند. پمپ های چرخ دنده ای از دو قسمت متمایز تشکیل شده اند، یکی قسمت جداره ثابت و دیگری قسمت دوار که شامل یک محور گردان با چرخ دنده می باشد. در پمپ های چرخ دنده ای مقداری مایع بین دنده های چرخ دنده پمپ به اصطلاح به تله می افتد و در اثر چرخیدن چرخ دنده ها این مایع به قسمت خروجی پمپ رانده می شود. این پمپ ها به گونه ای ساخته می شوند که در آنها فاصله میان اجزاء گردنده و جداره ثابت بسیار کم می باشد. کار برد این پمپها برای جا به جایی مایع با حجم کم و فشار متوسط می باشد. نکته مهم در مورد این پمپها آن است که هرگز نباید آنها را در حالیکه شیر خروجی پمپ (دیسچارج پمپ) بسته است روشن نمود؛ چرا که در این حالت، اگر هیچ شیر اطمینانی (سِیفتی وَلو) در مسیر دیسچارج پمپ وجود نداشته باشد، یا خود پمپ از بین می رود و یا اینکه لوله دیسچارج می شکند.
کاویتاسیون : این پدیده یکی از خطرناکترین حالتهایی است که ممکن است برای یک پمپ به وجود آید. آب یا هر مایع دیگری، در هر درجه حرارتی به ازای فشار معینی تبخیر می شود. هرگاه در حین جریان مایع در داخل چرخ یک پمپ، فشار مایع در نقطه ای از فشار تبخیر مایع در درجه حرارت مربوطه کمتر شود، حبابهای بخار یا گازی در فاز مایع به وجود می آیند که به همراه مایع به نقطه ای دیگر با فشار بالاتر حرکت می نمایند. اگر در محل جدید فشار مایع به اندازه کافی زیاد باشد، حبابهای بخار در این محل تقطیر شده و در نتیجه ذراتی از مایع از مسیر اصلی خود منحرف شده و با سرعتهای فوق العاده زیاد به اطراف و از جمله پره ها برخورد می نمایند. در چنین مکانی بسته به شدت برخورد، سطح پره ها خورده شده و متخلخل می گردد. این پدیده مخرب در پمپ ها را کاویتاسیون می نامند. پدیده کاویتاسیون برای پمپ بسیار خطرناک بوده و ممکن است پس از مدت کوتاهی پره های پمپ را از بین ببرد. بنابراین باید از وجود چنین پدیده ای در پمپ جلو گیری گردد. کاویتاسیون همواره با صدا های منقطع شروع شده و سپس در صورت ادامه کاهش فشار در دهانه ورودی پمپ، بر شدت این صدا ها افزوده می گردد. صدای کاویتاسیون مخصوص ومشخص بوده وشبیه برخورد گلوله هایی به یک سطح فلزی است. هم‌زمان با تولید این صدا پمپ نیز به ارتعاش در می آید. در انتها این صداهای منقطع به صداهایی شدید ودائم تبدیل می گردد و در همین حال نیز راندمان پمپ به شدت کاهش می یابد.

Sunday, August 3, 2008


مختصری از پنوماتیک


پنيوماتيك يكي از انواع انرژي هايي است كه در حال حاضر از آن استفاده وافر در انواع صنايع مي شود و مي توان گفت امروزه كمتركارخانجات يا مراكز صنعتي را مي توان ديد كه از پنيوماتيك استفاده نكند و در قرن حاضر يكي از انواع انرژي هاي اثبات شده اي است كه بشر با اتكا به آن راه صنعت را مي پيمايد.
پنيوما در زبان يوناني يعني تنفس باد و پنيوماتيك علمي است كه در مورد حركات و وقايع هوا صحبت مي كند امروزه پنيوماتيك در بين صنعتگران به عنوان انرژي بسيار تميز و كم خطر و ارزان مشهور است و از آن استفاده وافر مي كنند.
خواص اصلي انرژي پنيوماتيك به شرح زير است:
عامل اصلي كاركرد سيستم پنيوماتيك هواست و هوا در همه جاي روي زمين به وفور وجود دارد.
هواي فشرده را مي توان از طريق لوله كشي به نقاط مختلف كارخانه يا مراكز صنعتي جهت كاركرد سيستم هاي پنيوماتيك هدايت كرد.
هواي فشرده را مي توان در مخازن مخصوص انباشته و آن را انتقال داد يعني هميشه احتياج به كمپرسور نيست و مي توان از سيستم پنيوماتيك در مكان هايي كه امكان نصب كمپرسور وجود ندارد نيز استفاده نمود .
افزايش و كاهش دما اثرات مخرب و سوئي بر روي سيستم پنيوماتيك ندارد و نوسانات حرارتي از عملكرد سيستم جلوگير ي نمي كند.
هواي فشرده خطر انفجار و آتش سوزي ندارد به اين دليل تاسيسات حفاظتي نياز نيست.
قطعات پنيوماتيك و اتصالات آن نسبتا ً ارزان و از نظر ساختماني قطعاتي ساده هستند لذا تعميرات آنها راحت تر از سيستم هاي مشابه نظير هيدروليك مي باشد.
هواي فشرده نسبت به روغن هيدروليك مورد مصرف در هيدروليك تميز تر است و به دليل اين تميزي از سيستم پنيوماتيك در صنايع دارويي و نظاير آن استفاده مي شود .
سرعت حركت سيلندر هاي عمل كننده با هواي فشرده در حدود 1 الي 2 متر در ثانيه است و در موارد خاصي به 3 متردر ثانيه مي رسد كه اين سرعت در صنايع قابل قبول است و بسياري ازعمليات صنعتي را مي تواند عهده دار شود.
عوامل سرعت و نيرو در سيستم پنيوماتيك قابل كنترل و تنظيم است .
عناصر پنيوماتيك در مقابل بار اضافه مقاوم بوده و به آنها صدمه وارد نمي شود مگر اينكه افزايش بار سبب توقف آنها گردد .
تعميرات و نگه داري سيستماي پنيوماتيك بسيار كم خطر است زيرا در انرژي هاي قابل مقايسه نظير برق خطر جاني و آتش سوزي و در هيدروليك انفجار و جاني وجود دارد اما در پنيوماتيك خطر جاني به صورت جدي وجود ندارد وآتش سوزي اصلا ً وجود ندارد و بدين دليل در صنايع جنگ افزارسازي از سيستم تمام پنيوماتيك استفاده مي شود .
معايب سيستم پنيوماتيك به شرح زير است:
چون سيال اصلي مورد استفاده در سيستم پنيوماتيك هواي فشرده و جهت تهيه هواي فشرده بايد با كمپرسور آن را فشرده كرد همراه هواي فشرده شده مقداري رطوبت وناخالصي هوا ومواد آئروسل وارد سيستم شده و سبب برخي خرابي در قطعات مي شود لذا بايد جهت تهيه هواي فشرده فيلتراسيون مناسب استفاده نمود .
هزينه استفاده از هواي فشرده تا حد معيني اقتصادي مي باشد و اين ميزان تا وقتي است كه فشار هوا برابر 7 بار و نيروي حاصله با توجه به طول كورس و سرعت حداكثر بين 20000 تا 30000 نيوتن مي باشد .
به طور خلاصه مي توان گفت كه جهت قدرت هاي فوق العاده زياد مقرون به صرفه تر است از نيروي هيدروليك استفاده شود .
هواي مصرف شده در سيستم پنيوماتيك در هنگام تخليه از سيستم داراي صداي زيادي است كه اين مسئله نياز به كاربرد صدا خفه كن را الزامي مي كند.
به علت تراكم پذيري هوا به خصوص در سيلندر هاي پنيوماتيكي كه زير بار قرار دارند امكان ايجاد سرعت ثابت و يكنواخت وجود ندارد كه اين مسئله از معايب پنيوماتيك به شمار مي رود اما قابل ذكر است كه اخيرا ً يك نوع سيلندر كه بجاي شفت سيلندر از
نوار لاستيكي استفاده مي كند ساخته شده است كه اين عيب را بر طرف مي كنند .
به طور كلي در مقايسه مزايا و معايب پنيوماتيك مي توان گفت با توجه به مزاياي بسيار نسبت به معايب كمتر مي توان از پنيوماتيك بعنوان يك انرژي شايسته در صنايع استفاده كرد به خصوص با توجه به مزيت تميزي سيستم تعمير و نگه داري راحت تر ، نداشتن خطر جاني جهت پرسنل عملياتي و تعميراتي در سيستم كه در سيستم هاي ديگر نظير الكتريك و هيدروليك وجود ندارد ضمنا ٌ اين سيستم بي همتاست و گاهي فقط از اين سيستم در جهت عمليات توليدي بايد استفاده شود نظير : صنايع غذايي ، دارويي ، جنگ افزار كه حتما ً عمليات توليدي توسط سيستم پنيوماتيك انجام مي پذيرد.



تعاریف تخصصی در متن:
ائروسل چیست؟
آئروسل ها دسته ای از آلاینده های جوی می باشند که به دو قسمت تقسیم بندی می شوند.1.آئروسل های طبیعی 2. آئروسل های صنعتی
1.آئروسل های طبیعی اغلب شامل غبار سبك، نمك دریا و تركیبات سولفات آبزیان است كه این آئروسل ها دست كم در طول یك قرن از نظر غلظت، پراكندگی و خواص، ثابت بوده اند.
2. در مقابل آئروسل ناشی از فعالیت صنعتی بشر در اتمسفر افزایش یافته است. این افزایش ابتدا طی دوره صنعتی شدن، شروع و سپس با سرعت بیشتر از سال ۱۹۵۰ ادامه داشته است. اقلیم شناسان در بین تمامی تركیبات ریز آلوده كننده ای كه بشر تولید كرده، بیشترین توجه شان را بر روی تركیبات سولفور متمركز كرده اند
شناخته شده ترین ائروسلها, سولفات است. به دلیل حجم زیاد اطلاعات كه در مطالعات باران اسیدی جمع آوری شده است، سولفات شناخته شده ترین آئروسل است. آئروسل های دیگر مانند دوده ناشی از سوختن گرد و خاك ناشی از گسترش صحرا و دود ناشی از سوزاندن مزارع، اثری با اهمیت كمتری نسبت به سولفور صنعتی دارند

2.واحد بار:
1 bar = 100 k Pa (kilopascals)


Thursday, July 24, 2008




کمپرسور پیستونی (Reciprocating Compressor)


امروزه در صنعت تبرید بیشتر از کمپرسورهای پیستونی استفاده می شود . در این نوع کمپرسور ها نیز از حرکت رفت و آمدی پیستون سیال را متراکم می نمائیم .
این نوع کمپرسور اغلب در سیستم تبرید مورد استفاده قرار می گیرد و ممکن است قدرت آنها از چند دهم اسب تا چند صدم اسب خواهد بود و می توان از یک سیلندر ویا چند سیلندر تشکیل شده باشد . سرعت دورانی محور کمپرسور ممکن است از ۲ تا ۶ ( r . s -۱ ) تغییر نماید . در کمپرسور ها ممکن است موتور و کمپرسور از هم جدا بوده که کمپرسور های باز نامیده می شوند . ( Hermiticaly Compressor ) خواهیم داشت که بیشتر در یخچالهای منزل که موتور کوچکی دارند از این نوع کمپرسورها استفاده می شود .کمپرسورهای باز با قدرت های بالا غالباً افقی بوده و ممکن است دو عمله نیز باشند . در حالی که کمپرسورهای بسته معمولاً عمودی و یک مرحله می باشند .
ـ تقسیم بندی کمپرسورهای پیستونی :الف) از نظر قدرت برودتی به شرح زیر تقسیم بندی می شوند :۱) ریز ـ تا۵/ ۳ kw/h ( ۳۰۰ کیلو کالری در ساعت)۲) کوچک ـ از۵ / ۳ تا ۲۳ kw/h ( ۳ تا ۲۰ هزار کیلو کالری در ساعت )۳) متوسط ـ از ۲۳ تا ۱۰۵ kw/h ( ۲۰ تا ۹۰ هزار کیلو کالری در ساعت )۴) بزرگ ـ بیش از ۱۰۵ kw/h ( بیش از ۹۰ هزار کیلو کالری در ساعت)ب) از نظر مراحل تراکم به کمپرسورهای یک مرحله ای وکمپرسورهای دو یا سه مرحله ای .ج) از نظر تعداد حفره کارگر به حرکت ساده به طوری که مبرد فقط در یک طرف پیستون متراکم می شود و حرکت دوبل که مبرد به نوبت در هر دو طرف پیستون متراکم می شود .د) از نظر سیلندر به تک سیلندر و چند سیلندر .و) از نظر قرار گرفتن محور سیلندرها به افقی و قائم و زاویه ( V شکل و مایل)ر) از نظر ساختمان سیلندر و کارتر به ترکیبی و انفرادی .م) از نظر مکانیزم میل لنگ و شاتون به بدون واسطه ( معمولی ) و با واسطه .
● اجزاء کمپرسور پیستونی تناوبی :▪ کارتردر کمپرسورهای قائم و V شکل کارتر یک قسمت اساسی برای اتصال قسمتهای مختلف است و ضمناً نیروی ایجاد شده را تحمل می کند لذا باید سخت و مقاوم باشد .
کارتر های بسته تحت فشار مکش بوده و مکانیزم میل لنگ و شاتون و روغن کاری در آن قرار می گیرد و برای کنترل سطح روغن شیشه روغن نما و برای دسترسی به مکانیزم میل لنگ و شاتون و پمپ روغن درپوشهای حفره ای و جنبی وجود دارد . در کمپرسورهای کوچک معمولاً یک درپوش حفره ای وجود دارد , به فلانژ بالائی کارتر سیلندر متصل می گــردد . در کمپرسور های متوسط بزرگ کارتر و سیلندر با هم ریخته می شوند .
این امر باعث کم شدن تعداد برجستگی ها و هرمتیک بودن کمپرسور و درست قرار گرفتن محور سیلندر ها نسبت به محور درز ( سوراخ ) زیر یاطاقان میل لنگ می شود .
کارتر کمپرسور معمولاً از چدن ریخته شده بوده و در کمپرسور های کوچک از آلیاژ آلومینیوم می باشد.
▪ سیلندرها :در کمپرسورهای عمود ( قائم ) و V شکل بدون واسطه بصورت مجموعه دو سیلندر یا بصورت مجموع سیلندرها می سازند . در سیستم کارتر بوش داخلی پرس می شود که باعث کم شدن خورندگی و ساده شدن تعمیرات می گردد و در صورت سائیده شدن قابل تعویض هستند . مجموعه سیلندرها دارای کانال مکش و رانش مشترک می باشند . تحولات در داخل سیلندر عبارت است از مکش و تراکم رانش مبرد است و بدنه سیلندر نیروهای فشار گاز و فشردگی رینگها و نیروی نرمال مکانیزم میل لنگ و شاتون را تحمل می کند .
▪ پیستون:در کمپرسورهای عمودی وV و VV شکل بدون واسطه پیستون های تخت عبــوری بکــار می رود . ولی در کمپرسورهای غیر مستقیم الجریان ساده تر و غیر عبوری می باشد . در پیستون های عبوری که فرم کشیده تری دارند و سوپاپ مکش روی آن قرار دارد کانالی وجود دارد که از طریق این کانال بخار مبرد از لوله مکش به سوپاپ مکش هدایت شده . در کمپرسورهای اتصال مستقیم با اتصال پیستون به شاتون به وسیله اشپیل های شناور پیستونی (۳ گژنپین ) انجام می گیرد .
پیستون بدون رینگ معمولاً از چدن یا فولاد با کربنیک پائین ساخته می شود . پیستون کمپرسورهای افقی از چدن یا فولاد با تسمه های بابیتی در قسمت پائین می باشد . مهره و پیستون از جنس فولاد است . در پیستون های تخت لوله ای سوراخ های زیر گژنپین باید در یک راستا و عمود بر محور پیستون باشد . ( برای اینکه در جمع کردن پیستون با شاتون پیستون نسبت به محور سیلندر کج نباشد . در پیستون های دیسکی سوراخ زیر میله باید در یک راستای سطح خارجی پیستون وسطح نگهدارنده لوله عمود بر محور پیستون باشد. شیارهای رینگ ها باید موازی هم بوده و سطوح خارجی آنها عمود بر پیستون باشد . مفصل اتصال پیستون و شاتون ( دسته پیستون ) کاملاً شناور و آزاد است و می تواند در داخل بوش شاتون و بوشهای بدنه پیستون آزادانه بچرخد .
▪ رینگ های پیستون :برای جلوگیری از نفوذ گاز متراکم شده به کارتر از رینگ های فشار( کمپرسی) و همچنین جلوگیری از خروج روغن از آن از رینگ های روغن استفاده می شود که در شیارهای مخصوص روی پیستون سوار می شوند . رینگ ها باید حتی الامکان کیپ شیار و در عین حال مانع حرکت آزاد پیستون در سیلندر نشوند . تعداد رینگهای آب بندی بستگی به دور کمپرسور دارد .
▪ واسطه ( کریسکف):واسطه برای اتصال رابط و شاتون بکار می رود و یک حرکت متناوب مستقـــیم الخط را طی می کند .▪ شاتون :شاتون برای اتصال میل لنگ به پیستون یا به واسطه بکار می رود و جنس آن فولاد و بعضی اوقات چدن تشکیل شده از میله با دو سر که یکی از آنها اتصال ثابت دارد و دیگری مجزا یا جدا شونده است .
▪ میل لنگ :این قسمت کمپرسور یکی از مهم ترین اجزاء می باشد و باید خیلی سخت و محکم و در سطح اتصال آن نباید در شرایط مختلف خورندگی ایجاد شود . میل لنگ یک محور چرخنده است که در حرکت دورانی الکتروموتور را توسط شاتون به حرکت متناوبی پیستون در داخل سیلندر تبدیل می کند .
▪ چرخ طیّار :چرخ طیار را روی میل لنگ بر خار نشانده و با مهره محکم می کنند . در زمانی که برای انتقال انرژی از الکتروموتور به میل لنگ از تسمه استفاده می شود .
▪ کاسه نمد :برای محکم نمودن میل لنگ و آب بندی خروجی آن از بدنه کارتر در کمپرسورهای اتصال مستقیم از کاسه نمد استفاده می شود . درست کارکردن کاسه نمد باعث آب بندی بودن کمپرسور و در نتیجه کار صحیح کمپرسور می شود .
کاسه نمدها را می توان به دو گروه تقسیم کرد:۱) کاسه نمد کمپرسورهای اتصال مستقیم با حلقه های اصطکاک , آب بندی بین حلقه ها در اثر ارتجاع فنر یا سیلیفون یا دیافراگم و همچنین به کمک وان روغنی که ایجاد سیفون هیدرولیکی می نماید می باشد . به گروه اول می توان کاسه نمد سیلیفونی و فنری را نسبت داد .۲) کاسه نمد کمپرسورهای اتصال غیرمستقیم دارای خانه های زیاد با حلقه های برجسته فلزی یا مسطح با قشر فلوئور است . کاسه نمد سیلیفونی با گشتاور ( کوپل) اصطحکاک برتری .
فولاد تا سالهای اخیر در کمپرسورهای کوچک فریونی با میل لنگ به قطر تا ۴۰ میلی متر مورد استفاده قرار می گرفت. کاسه نمد فنری ـ کار کمتر در تهیه ، معتبر در کار ، مونتاژ ساده و کار ساده تر مزایای کاسه نمدهای فنری با سیفون روغنی است .بهترین نوع کاسه نمد فنری با کوپل یا چفت های حلقه ای می باشد که یکی از گرافیت مخصوص و دیگری از فولاد سخت می شوند .
▪ سوپاپ های مکش و رانش کمپرسور :در کمپرسورهای مبرد این نوع سوپاپ ها خودکار است و بر اثر اختلاف فشار در دو طرفه صفحه سوپاپ بازشده و در اثر ارتجاع فنر صفحه بسته می شود . مورد استفاده بیشتر را نوع نواری ( صفحه های باریک ) ارتجاعی بدون فنر دو طرفه دارد که یک آب بندی قابل اطمینان را بوجود آورده و مقطع عبور زیادی را ایجاد می نمایند . صفحات این نوع سوپاپ ها از صفحات باریک فولادی که خاصیت ارتجاعی دارند و به ضخامت۲/ ۰ تا ۱ میــلی متر هستــند تهیــه می شوند و فرم صفحات مختلف است . اجزاء اساسی هر سوپاپ عبارتند از صفحه سوپاپ , پایه ( نشیمنگاه) که صفحه روی آن می نشیند و مقطع عبور و بست را تشکیل می دهند و محدود کننده صفحات روی پایه . در بعضی از سوپاپ ها صفحه سوپاپ به وسیله فنر به پایه فشرده می شود . و در کمپرسورهای فریونی غیر مستقیم الجریان سوپاپ های مکش و رانش در قسمت فوقانی سیلندر ( تخته سوپاپ ) واقع هستند .
▪ سوپاپ محافظ :برا ی حفاظت کمپرسور از سانحه در مواقع ازدیاد سریع فشار رانش از سوپاپ محافظ استفاده می شود . ازدیاد سریع فشار رانش ممکن است بخاطر نبودن آب در کندانسور یا بسته بودن شیر رانش در زمان روشن کردن کمپرسور بوجود بیاید .در زمان کار کمپرسور سوپاپ محافظ باید بسته باشد و وقتی فشار از حد مجاز در سیلندر تجاوز کرد آن باز شده و قسمت رانش را با قسمت مکش کمپرسور مرتبط می کند . فشار باز شدن سوپاپ محافظ بستگی به اختلاف فشار محاسبه ای ( Pk - Po ) دارد که معمولاً برای آمونیاک و فریون ۲۲ حدود۲ / ۱ مگا پاسکال یا ۱۲ کیلو گرم بر سانتی متر مربع و برای فریون ۱۲ حدود۸/ ۰ مگا پاسکال می باشد که باز شـدن ســـوپاپ محافــظ در اختلاف فــشار۶/ ۱ ( آمونیاک و فریون ۲۲ ) و یک مگا پاسکال برای فریون ۱۲ تنظیم می شود .
▪ بای پاس (میان بر) :دو نوع میان بر وجود دارد :برای کم کردن قدرت مصرفی در استارت کمپرسورهای متوسط و بزرگ از میان بر استارت استفاده می شود و قسمت رانش را به قسمت مکش متصل می کند و در نتیجه در زمان استارت نیروی وارد بر پیستون حذف می شود یعنی کمپرسور در خلاص کار می کند و قدرت فقط برای حرکت کمپرسور و جبران نیروی انرسی و مقاومت مصرف می گردد .
میان بر گاز ممکن است دستی یا اتوماتیک باشد که در این صورت برای باز شدن از یک شیر برقی (سلونوئید) استفاده می شود و بسته شدن از طریق ضربان رله زمانی وقتی الکتروموتور دور کافی را بدست می آورد صورت می پذیرد .
در میان بر دستی زمان استارت کمپرسور شیرهای رانش و مکش هر دو بسته هستند در حالی که در میان بر اتوماتیک هر دو باز بوده و در لوله برگشت یک سوپاپ برگــشت بکار می رود. در کمپرسورهای کوچک و متوسط تا قدرت ۲۰ کیلو وات معمولاً از میان بر استارت استفاده نمی شود و الکتروموتور آنها با گشتاور استارت بیشتری انتخاب می گردد . در کمپرسور های بزرگ برای تغییر بازده برودتی از میان بر تنظیم استفاده می شود و بطور دستی یا اتوماتیک قسمت سیلندر به قسمت مکش متصل می گردد و بدین ترتیب بازده برودتی حدود ۴۰ الی ۶۰ درصد کاهش می یابد .
● سیستم روغن کاری :روغن کاری گرم شدن و خورندگی قسمت های متحرک کمپرسور را کم کرده و انرژی مصرفی برای مقاومت را تقلیل می دهد . همچنین باعث آب بندی بیشتر کاسه نمد , رینگ ها و سوپاپ ها می گردد . در کمپرسور های مبرد از روغن های مخصوص طبیعی و مصنوعی استفاده می گردد و برای مبردهای مختلف روغن های متفاوتی بکار می رود .( با عددی که نشان دهنده غلظت روغن است) روغن کاری کمپرسورها به دو طریق فشاری یک پمپ کوچک روغن را تحت فشار به یاطاقانها ثابت متحرک می رساند . پمپ های مورد استفاده چرخ دنده ای یا پروانه ای و یا پیستونی می باشند که یک سوپاپ آزاد کننده فشار در مسیر پمپ سوار می شود تا از تمرکز فشار زیاد بر روی پمپ جلوگیری بعمل آورد . نیروی لازم برای کار پمپ از گردش میل لنگ تأمین می گردد که در پمپ های پیستونی شناور انتهای میل لنگ یک بادامک یا برجستگی خارج از مرکز خواهد داشت و در پمپ چرخ دنده ای سر میل لنگ نیز چرخ دنده ای برای چرخش پمپ دارد و در پمپ های پروانه ای انتهای میل لنگ دارای یک وسیله گرداننده پره ای می باشد .
در قسمت مکش پمپ یک فیلتر قرار می گیرد . توری در ارتفاع ۱۰ تا ۱۵ میلی متر از کف کارتر قرار گرفته و تعداد خانه های ( شبکه های توری) فیلتر بین ۱۵۰ تا ۳۰۰ عدد در یک سانتی متر مربع می باشد . در قسمت رانش پمپ روغن کمپرسورهای متوسط و بزرگ یک فیلتر صفحه ای شکافدار توری ریز قرار می گیرد که با کمک آنها وقتی محور بطور دستی می گردد متناوباً تمیز می شود . فاصله بین صفحات۰۳/ ۰ تا۱/ ۰ میلی متر است . فشار روغن از طریق سوپاپ مخصوص کنترل می شود و در صورت افزایش فشار باز شده و روغن از قسمت رانش پمپ به کارتر می ریزد . معمولاً فشار روغن بین۶/ ۰ تا ۲ اتمسفر بیش از فشار در کارتر است و هر چقدر فشار روغن زیاد باشد مقدار روغن خروجی از کمپرسور نیز زیادتر می گردد . وقتی از یاطاقانهای لغزنده استفاده می شود معمولاً تمام روغن از پمپ به یاطاقان فرستاده شده و از طریق کانال های مخصوص در میل لنگ به یاطاقان شاتون و همچنین کاســه نمد می رود . وقتی میل لنگ با یاطاقان نوسانی استفاده می شود , روغن به کاسه نمد داده شده و از شیار میل لنگ به قسمت های دیگر روانه می گردد . کمپرسور ها معمولاً دارای کلید اطمینان روغن هستند که به فشار روغن کار می کند و هر زمان که فشار روغن به دلیل خرابی سیستم افت کند موتور را از کار می اندازد و کمپرسور خاموش می شود . در سیستم روغن کاری به طریق پاشش کارتر تا نیمه های یاطاقان اصلی پر از روغن می شود و زمانی که میل لنگ می چرخد ته شاتون ( قسمت خمیده ) وارد روغن شده و با گردش میل لنگ روغن را به قسمت انتهای سیلندر و پیستون می پاشد . گاهی قسمت انتهای شاتون در اتصال به میل لنگ دارای محفظه ای است که در ورود به روغن پر شده و وارد یاطاقان می شود . سیستم روغن کاری پاششی معمولاً در کمپرسور های کوچک مورد استفاده قرار می گیرد .
در بعضی از کمپرسور ها برای سیستم روغن کاری خنک کننده آبی یا هوائی بصورت کوئل در نظر می گیرند . در کمپرسور های معمولی مخزن روغن همان کارتر کمپرسور است ولی در کمپرسورهای واسطه ای مخزن روغن مخصوصی در نظر گرفته میشود.در کمپرسور هرمتیک از روغن کاری فشاری استفاده می شود .
● سیستم خنک کنندة کمپرسور :کمپرسورها به دو علت اساسی خنک می شوند که یکی اصطکاک بین قطعات متحرک و دیگری افزایش درجه حرارت ناشی از تراکم بخار است . خنک کردن کمپرسور به منظور جلوگیری از کاهش کارآیی کمپرسور و همچنین نگهداری کیفیت روغن و روغن کاری است .روغنی که برای روغن کاری به گردش در می آید وسیله خوبی برای جـــذب و دفع گرمــا می باشد و به همین جهت در بعضی از کمپرسورها خنک کننده مخصوص بــرای روغن بکار می رود و در بعضی از کمپرسورها سطح خارجی را پره دار می سازند تا سطح تبادل حرارتی آنرا با هوا زیاد کنند و در بعضی انواع نیز از یک موتور و پنکه جهت عبور هوا بر روی کمپرسور و خنک کردن آن استفاده می شود .در سیستم هائی که تقطیر مبرد به وسیله آب خنک کننده برج است , کمپرسور نیز با آب خنک می شود . برای گردش آب لوله با محفظه ای در قسمت مجاور بالای سیلندر در نظر گرفته می شود که به کیسه خنک کننده معروف است . کمپرسور های هرمتیک ( بسته ) که موتور و کمپرسور در یک پوسته قرار دارند بیشتر در معرض داغی قرار دارند و معمولاً با عبور دادن بخار قسمت مکش کمپرسور با اطراف موتور گرمای آنرا می گیرند .

Tuesday, June 17, 2008












كمپرسور ها :( Compressors)



کمپرسور دستگاهیست برای متراکم کردن گاز .هوای متراکم در



،CNGمخازن


موتورهای توربوجت،جک های پنوماتیکی وسایر تجهیزات نیروگاهی،نظامی و .... کاربرد دارد



. كار كمپرسورها در نیروگاهها ، ايجاد نيروي مكش لازم براي مكيدن گاز مبرّد از اواپراتور ، متراكم كردن گاز ، و سپس فرستادن آن به كندانسور است ، كه در آن گاز به مايع تبديل مي شود . مكندگي كمپرسور ، گاز را از سمت راست فشار ضعيف به سمت فشار قوي منتقل مي كند ، و حجم گازي كه بايد متراكم شود بستگي به ميزان جابه جايي پيستون كمپرسور دارد .



انواع کمپرسورها:


كمپرسورهايي كه در تهويه مطبوع به كار مي روند برحسب ساختمان و طرزكار به انواع زير تقسيم مي شوند


1- تک سیلندر
2- چند سیلندر
كمپرسورهايي كه در تهويه مطبوع به كار مي روند برحسب روش تراكم به انواع زير تقسيم مي شوند
1- پيستوني
2- دوار
3- گريز از مركز

كمپرسورهاي پيستوني(reciprocating compressors):

طراحي سيلندر در كمپرسورهاي پيستوني از نظر تعداد و نحوة آرايش سيلندرها و دوطرفه يا يك طرفه بودن آنها (پيستون دوسره يا يك سره)


متفاوت است . كمپرسورهاي پيستوني را با يك سيلندر تا 16 سيلندر مي سازند و نحوة آرايش سيلندر در آنها برحسب نياز به صورتهاي جناغي ، جفت جناغي و شعاعي يا ستاره اي است

كمپرسورهاي دوار (screw compressors):

از آنجا كه در كمپرسورهاي دوّار نوع بسته يا هرمتيك ، كيفيت گرداندن كمپرسور به دليل يكجا بودن موتور و كمپرسور بهتر است ، امروزه آنها را ، به ويژه در ظرفيتهاي كمتر از يك تُن ، به تعداد زياد توليد مي كنند . كمپرسور بسته ، كمپرسوري است كه در آن موتور و كمپرسور هر دو درون يك محفظة‌تحت فشار جا گرفته اند ، و محور موتور و ميل لنگ كمپرسور يكپارچه است . موتور به طور دائم با مبرّد تماس دارد .
عملكرد كمپرسور دوّار مشابه با كمپرسور پيستوني است ؛ به اين ترتيب كه با متراكم ساختن گاز مبرّد اختلاف فشار لازم براي به گردش درآوردن مبرّد در سيستم را فراهم مي كند . البته نحوة تراكم گاز در كمپرسور دوّار ، اندكي متفاوت است . در اين كمپرسور عمل تراكم در اثر حركت دوراني روتور نسبت به اتاقك تراكم يا سيلندر انجام مي گيرد .
كمپرسورهاي دوّار از نظر ساختمان به دو نوع تيغه ثابت و تيغه گردان تقسيم مي شوند . قطعات متحرك كمپرسور دوّار تيغه ثابت عبارت اند از : رينگ ، بادامك و تيغة كشويي وغیره

كمپرسورهاي گريز از مركز:

كمپرسورهاي گريز از مركز ذاتاً ماشينهاي پُر دور هستند و بهترين گردانندة‌ آنها توربين بخار است . از آنجا كه آنها را براي دورهاي همسنگ دور بالاي توربين طراحي مي كنند ، مي توان آنها را مستقيماً كوپله كرد . جايي كه بخار پُرفشار باشد ، توبين به منزلة شيرفشار شكن عمل مي كن و بخار كم فشار خروجي از توربين مي تواند براي گرمايش يا مقاصد ديگر به كار رود . ولي در بسياري از كاربردها ، خصوصاً در ظرفيتهاي پايين ، كمپرسورها را موتورهاي برقي مي گردانند كه به جعبه دنده هاي افزاينده مجهزند . كمپرسورهاي گريز از مركز از مبرّدهاي كم فشار استفاده مي كنند و معمولاً اواپراتور و كندانسور آنها هر دو با فشار كمتر از جوّ كار مي كنند .
عمل تراكم گاز در كمپرسور گريز از مركز با نيروي گريز از مركز انجام مي گيرد . از اين رو اين كمپرسورها براي تراكم مقادير زياد گاز مبرّد و اختلاف فشارهاي كم ايدئال هستند . همچنين سيستمهاي تبريد كم دما و به خصوص آنهايي كه از هيدروكربنهاي نفتي يا هالوژنه به عنوان مبرّد استفاده مي كنند ، سازگاري بيشتري با اين كمپرسورهاي دارند .

در تأسيسات كمپرسور گريز از مركز ، اگر توربين بخار در دسترس باشد از نظر اقتصادي ترجيح دارد ، زيرا تجهيزات و نيروي كار لازم براي چنين تأسيساتي در مقايسه با آنچه براي كمپرسور گردنده با توربين گازي مشابه لازم است ، نسبتاً كوچكتر و كمتر است . دليل آن عمدتاً جمع و جوري و سبكي دستگاهها نسبت به قدرت مصرفي است . به علاوه كمپرسور گريز از مركز فقط بخش كوچكي از فضاي لازم براي تجهيزات تبريد را اشغال مي كند . واحدهاي تبريد نوع گريز از مركز در ظرفيتهاي 100 تا 2500 تُن و براي كار موتور برقي ، توربين بخار و يا موتور درونسوز توليد مي شوند .




نگاهی به ماشینهای کنترل عددی کامپیوتری CNC







ماشینهای ابزار مدرن و رباتها دستگاههای خودكار پیشرفته ای هستند كه از كامپیوتر بعنوان بخش اساسی كنترل كننده آنها استفاده می شود. كامپیوترها در حال حاضر یكی از اجزاء اصلی برای اتوماتیك كردن دستگاهها هستند و می توانند دستگاههای مختلفی مانند ماشین های ابزار , جوش و برش با لیزر را كنترل كنند. آنها می توانند خطوط تولید را براه اندازند یا كنترل یك كارخانه را در دست گیرند.
در مقایسه با ماشین ابزار معمولی , (Computer Numerical Control) CNC جانشین كارهای دستی اپراتور می شود. در ماشینكاری معمولی با هدایت ابزار برنده در طول قطعه كار توسط یك چرخ دستی، قطعه کار براده برداری می شود كه این چرخ دستی توسط اپراتور كنترل می گردد. به عبارت دیگر برش محدوده جسم توسط یك اپراتور ماهر بوسیله كنترل چشمی انجام می گیرد.ولی در ماشین CNC كلیه عملیات لازم در یك برنامه گنجانده می شود كه بتواند با حداقل نیاز به ورودهای بعدی نتیجه لازم را بگیرد .
در این سیستم كلیه دستورهای كنترل كننده , مانند اطلاعات مسیر و وظایف سوییچ ها در قالب كدهای عددی ریخته می شوند. كامپیوتر این كدها را شناسایی و پردازش کرده و سپس آنها را به ماشین ارسال می نماید . كامپیوتر می تواند در عرض چند ثانیه مجموعه ای از دستورها را به فرمانهای قابل فهم ماشین تبدیل نماید. در سیکل های زمانی بسیار کوتاه ، سیستم کنترل از نتایج عملکرد گزارش می گیرد (فید بک) و پس از مقایسه با مقادیر تنظیمی ، اصلاخات لازم را انجام می دهد.اطلاعات فوق الذكر را می توان در حافظه ماشین یا روی حافظه خارجی (دیسكتها) حفظ نمود.


برنامه نویس (Part Programmer) باید برای نوشتن برنامه های ماشینکاری قطعات دارای اطلاعات و تجربیاتی در زمینه مكانیك , ابزاربرشی و قید و بستها باشد . استفاده از اطلاعاتی نظیر قابلیت ماشینكاری (Machinability) و فرآیند تولید نیز از اهمیت قابل ملاحظه ای برخوردار می باشد . به منظور تهیه برنامه های پیچیده تر تسلط بر مسائل جبر و مثلثات كارساز خواهد بود.
· تفاوت سیستمهای NC و CNC
رشد فرآیند خودكار شدن تولید نیاز به ماشین هایی كه با كامپیوتر كنترل می شوند را افزایش داد و منجر به توسعه ماشین های NC تحت عنوان CNC گردید.
سیستمهای NC از سخت افزار الكترونیكی بر پایه تكنولوژی مدارهای دیجیتالی استفاده می کردند. CNC یك مینی كامپیوتر یا میكرو كامپیوتر را برای كنترل ماشین ابزار بكار می گیرد و تا حد امكان مدارهای سخت افزار اضافی را در واحد كنترل حذف می كند. گرایش از NC بر پایه سخت افزار به CNC مبتنی بر نرم افزار انعطاف پذیری سیستم را افزایش داد و امكان تصحیح برنامه ها را در حین استفاده فراهم ساخت.
تاریخچه ماشینهای CNC -
® 1642ماشین حساب چرخ دنده ای پاسکال
® 1804 ماشین بافندگی ژاکارد با کارت پانچ
® 1946 اولین کامپیوتر دیجیتال ENIAC برای ارتش آمریکا
® 1947 اختراع ترانزیستور
® 1949-1952اعلام نیاز نیروی هوائی ایالات متحده وساخت اولین ماشین فرز با کنترل اتوماتیک(عددی) توسط شرکت Parsons با همکاری فنی و تحقیقاتی MIT
® 1958ابداع زبان برنامه نویسی APT
® 1959توسعه IC
® 1972اولین ماشین کنترل عددی با مینی کامپیوترCNC
® 1975ساخت کنترلر فانوک سیستم 5 و 6
® 1977-1982 ساخت کنترلر Sinumerik System 7 با میکروپروسسور 4بیتی
® 1982 ساخت کنترلر Sinumerik System 8 با میکروپروسسور 16بیتی
® 1981 ساخت کنترلر Sinumerik System 3
® 1985 ساخت کنترلر Sinumerik 810- سری 800 آنالوگ
® 1986 ساخت کنترلر Sinumerik 850
® 1988 ساخت کنترلر Sinumerik 880
® 1995-1996ساخت کنترلر 810 / 840 سری دیجیتال
ابداع كنترل عددی در سال 1952 فصل جدیدی را در امر اتوماسیون گشود. بعد از جنگ جهانی دوم نیروی هوایی آمریكا احساس كرد نیاز به تولید قطعات پیچیده و دقیق هواپیما دارد كه ساخت آنها با ماشینهای ابزار معمولی مشكل است . اولین قدمها در راه توسعه یك ماشین ابزار مناسب در كمپانی Parsons در ایالت میشیگان برداشته شد(1947) و در آزمایشگاه سرو مكانیزم انستیتو تكنولوژی ماساچوست MIT كامل شد (1949) . در سال 1952 ساخت یك فرز با كنترل اتوماتیك سه محور انجام پذیرفت.
سیستم كنترلر NC بر اساس اصول كامپیوترهای دیجیتالی می باشد كه در آن زمان یك تكنولوژی پیشرفته محسوب می شد. توسعه منطقی NC كنترلهای عددی كامپیوتری CNC بود كه در آن یك كامپیوتر بعنوان بخش اصلی سیستم كنترلر انجام وظیفه می كند. رباتهای صنعتی همزمان با سیستمهای CNC توسعه یافتند و اولین ربات تجارتی در سال 1961 ساخته شد اما تا اواخر دهه 70 نقش مهمی را در تولید بازی نكردند.
· مزایا و كاربردهای CNC
I. مزایا:
1- توانائی ماشینکاری قطعات پیچیده (انعطاف پذیری )
2- دقت بالا
3- تکرارپذیری
4- عدم نیاز به ماشینكار با تجربه
5- خطر كمتر برای اپراتور
6- سرعت بالا در ماشینكاری و به تبع آن كاهش زمان تولید
7- كاهش ضایعات
8- كاهش امكان خطای انسانی
9- كاهش هزینه ساخت قید وبست
10- كاهش زمان تنظیم اولیه ماشین
11- كاهش زمان اندازه گیری و كنترل
12- افزایش قابل توجه راندمان تولید
II. معایب:
1-قیمت نسبتا زیاد
2-تعمیر و نگهداری پیچیده تر و پرهزینه تر
3-هزینه پرسنلی بیشتر
III. موارد كاربرد ماشین CNC
1- تولید قطعات متنوع در تیراژ نسبتا زیاد
2- -ساخت قطعات پیچیده هر چند تیراژ كمی داشته باشند(قالبها)
3- اگر تعداد قطعات بیش از 100000 در سال باشد (قطعات خودرو)،استفاده از ماشینهای مخصوص (Special Purpose Machines) صحیح تر است.




Sunday, June 15, 2008

(valves)معرفی شیرهای صنعتی

gate valve



يك gate valve ،ولو با حركت خطي است كه براي شروع يا قطع جريان سيال استفاده مي شود اين ولو قابل تنظيم نبوده و قابليت تنظيم دريچه اي جريان را نيز ندارد. نامgate (كشو) از قرارگرفتن ديسك در جريان سيال مشتق گرديده است. به gate valve گاهي اوقات slide valve نيز گفته مي شود.اين ولوها جهت رساندن افت فشار به پائين تر ين سطح مورد استفاده قرار مي گيرد.اين ولوها داراي حركت خطي مي باشند.
اين نكته مهم است كه بدانيم قطر ورودي سيال به داخل ولو دقيقا همان قطر لاين مي باشد.
انواع Gate Valve
دو نوع gate valve وجود دارد:
1- نوع اول كه به نام موازي معروف است بر اساس استفاده از يك ديسك تخت دروازه اي كه در بين دو نشيمنگاه موازي قرار گرفته تشكيل گرديده است.(جريان بالادست وجريان پائين دست) اين ولوها همچنين داراي يك لبه تيزي در قسمت پائين خود مي باشند كه اين لبه تيز براي برش واز بين بردن ذرات جامد ورودي به ولو مي باشد.
مزيت مهم اين قبيل ولوها اينستكه اين ولوها علاوه بر بكار رفتن براي valve seat هاي نامتقارن ، مي توانند براي valve seat هاي زاويه اي نيز بكار روند.



۲- نوع ديگر ازgate valve ها بنام ‌gate valve هاي با gate گوه اي شكل مي باشند.
دراين نوع از ولوها از دو seat مورب ويك gate مورب استفاده مي گردد.(به منظور امكان بسته شدن در حالت shut off)

ديسك يك gate valve وقتيكه gate valve فول باز مي شود،كاملاً از مسير عبور جريان برداشته مي شود . اين خاصيت باعث از بين رفتن هرگونه مقاومتي در ولو درهنگامي كه ولو باز است مي شود. وقتيكه ولو كاملاً بسته شد توسط يك رينگ آب بند ديسكي صفحه اصلي را آب بند مي كند و آب بندي خوبي بوجود مي آيد. با قرارگيري ديسك درداخل رينگ آب بندي، مقدار بسيار كمي نشتي و يا اصلاً هيچ مقدار نشتي ممكن است درديسك عبوري بوجود بيايد (درحالتيكه ولو بسته شده است ).


check valve
ولوهاي يكطرفه(CHECK VALVE)
ولوهاي يكطرفه براي جلوگيري از بازگشت سيال در يك سيستم پايپينگ در نظر گرفته مي شوند. اين ولوها توسط جريان سيال در لاينها عمل مي كنند.فشار سيال عبوري از درون لاين باعث بازشدن ولو گرديده و هرگونه برگشت سيال باعث بسته شدن ولو خواهد شد.در واقع نمونه هايي از انواع اين ولوها در زير امده است:

1- چك ولوهاي نوساني
2- چك ولوهاي ديسكي
3- چك ولوهاي با ديسك دوتكه
4- چك ولو قطع كننده اي
5- چك ولو با ديسك وارونه

چك ولوهاي نوساني با بدنه مستقيم داراي ديسكي مي باشند كه در بالاي بدنه به بدنه قلاب شده است.چك ولوهاي نوساني عموما در خطوط پيوسته كه داراي gate valve مي باشند مورد استفاده قرار مي گيرند چون اين ولوها جريان ازاد نسبي را از خود عبور ميدهند.
اين ولوها براي لاينهايي كه سرعت سيال پائين مي باشد مورد استفاده قرار مي گيرند ودر لاينهاي كه داراي جريان ضرباني مي باشند نبايد از اين ولوها استفاده نمود.
چون بطور پيوسته ديسك باز وبسته شده وكوبيده شدن ان باعث از بين رفتن متعلقات ولو خواهد گرديد.بطور كلي هما نطور كه بيان شد اين نوع چك ولوها گزينه مناسبي براي حالتيكه سيال حركت ضربه اي داشته ويا برگشت سيال سريع باشد نمي باشد .از انجائيكه اين چك ولوها داراي چندين قطعه بوده كه بوسيله اتصالاتي به يكديگر مرتبط گرديده اند لذا همين عامل باعث گرديده كه در ميان ساير چك ولوها داراي كمترين استحكام باشند.علاوه بر اين در حالتيكه ديسك حركت نسبتا بزرگي داشته باشد اين حالت مي تواند منتج به افزايش سرعت برگشت ديسك گرديده و نيروي ضربه اي بزرگي را درحالت ناگهاني بازوبسته شدن بوجود اورد.
اين نوع چك ولوها را مي توان هم درحالت افقي وهم عمودي مورد استفاده قرار داد . (درحالت نصب عمودي بايد جريان سيال از پائين به بالا باشد تا نيروي جاذبه به بسته شدن ديسك كمك نمايد)اين قبيل از چك ولوها بدليل سادگي تجهيزات تشكيل دهنده ، داراي تعميرات به نسبت ساده تري در مقايسه با ساير چك ولوها مي باشند.

ولوهاي ديافراگمي(Diaphragm Valve)


يك ولو ديافراگمي ، ولوي است با حركت خطي كه در موارد باز كردن مسير ، تنظيم ميزان جريان وهمچنين بستن مسير سيال مورد استفاده قرار مي گيرد. علت نامگذاري اين ولو بخاطر وجود يك ديسك قابل انعطاف در درون آن مي باشد كه با seat ولو در قسمت بالاي ولو جهت ايجاد يك آب بندي مناسب قرار گرفته است.
در اين ولو يك ديافراگم قابل انعطاف توسط يك ميله اي (stud) كه با ديافراگم بصورت يكپارچه مي باشد به قسمت فشار دهنده(كمپرسور) ولو متصل گرديده است.فشاردهنده(كمپرسور) بوسيله stem ولو به بالا وپائين حركت مي كند.هنگاميكه فشاردهنده(كمپرسور) به سمت بالا حركت كند ، ديافراگم به بالا كشيده مي شود واگر كمپرسور به پائين برود آنگاه ديافراگم نيز به پائين رفته وشكل انتهايي ولو را به خود مي گيرد.

تقسيم بندي انواع ولوهاي ديافراگمي
ولوهاي ديافراگمي بر اساس شكل بدنه به دو گروه زير تقسيم بندي مي شوند:
1- نوع با برامدگي داخل بدنه(weir type)
در اين نوع يك قسمت برامدگي در داخل بدنه بصورت ريخته گري تعبيه مي گرددو درهنگام بسته شدن ولو ، ديافراگم بر روي اين برامدگي مي نشيند و عبور جريان را محدود مي كند.

2- نوع بدون برامدگي داخل بدنه (straight-through type )
در اين نوع ولوها ، ديافراگم بصورت يك شكل گوه اي در مي ايد


از ولوهاي ديافراگمي مي توان در كنترل نمودن جريان نيز استفاده نمود.نوع weir(داراي برامدگي سد كننده در وسط) براي كنترل جريان گزينه مناسبي بوده ولي عيب آن محدود بودن منطقه عبور سيال مي باشد.

از ولوهاي ديافراگمي همچنين براي كنترل جريانهاي كوچك وهنگامي كه سيال داراي خاصيت خورندگي بوده وسيالات راديواكتيو، مي توان استفاده نمود.
عمر مفيد ديافراگم بستگي به نوع ماده اي كه از داخل ولو مي گذرد وهمچنين دما، فشار و تعداد دفعات استفاده از ولو بستگي دارد.
در بعضي از انواع مواد تشكيل دهنده ديافراگمهاكه از نوع الاستومري مي باشند ، اين ديافراگمها مقاومت بسيار خوبي در دماهاي بسيار بالا دارند.هرچند كه بايد توجه داشت خواص مكانيكي مواد الاستومري در دماهاي بالا پائين خواهد آمد وامكان از بين رفتن آن نيز در فشار هاي بالا وجود دارد.
بيشتر مواد الاستومري در دماي پائين تر از 150 F بهترين عملكرد را دارا مي باشند.
از موارد ديگر مزاياي اين ولوها ايزوله كردن قسمتهاي مختلف ولو در مقابل سيال عبوري مي باشد.بگونه اي كه ديافراگم خود باعث ايزوله كردن قسمتهاي مختلف ولو در مقابل سيال عبوري مي گردد.با توجه به اين خاصيت اين ولوها براي سيالات خورنده و همچنين سيالاتي كه داراي مواد جامد معلق مي باشند مناسب خواهند بود..باتوجه به اينكه مجموعه درپوش ولو در معرض تماس با سيال عبوري قرار نمي گيرد لذا در تهيه متريال آن مي توان از مواد ارزانتري استفاده نمود.با توجه به پيشرفتي كه در طراحي ديافراگم ومواد آن صورت پذيرفته ، امروزه ديافراگم هاي جديد قادر به عملكرد با انواع سيالات عبوري مي باشند.


Safety Valve
شير اطمينان(SAFETY VALVE)
از تجهيزات ويژه اي كه يك واحد را درمقابل افزايش ناگهاني فشار ايمن مي سازد شيرهاي اطمينان هستند.
شيرهاي اطمينان به عنوان وسيله اي مناسب جهت جلوگيري از ازدياد فشار ناگهاني در موتورخانه ها ،كارخانه ها وبطور كلي انواع سايتها هاي صنعتي وبراي انواع سيالات مختلف از قبيل گاز ، بخار، آب ويا هواي فشرده استفاده مي گردند.
محدوديت فشار دراينگونه كاربردها معمولا ناشي از فشار قابل تحمل تجهيزات ، لوله هاودستگاهها ويا محصولات توليدي وهمچنين مسائل مرتبط با حفظ ايمني افراد مي باشد كه اصطلاحا به محدوده فشار كاركرد امن(safe operating limits for pressure)ويا SOL/P معروف است. نحوه باز شدن شيرهاي اطمينان ومشخصات كاري انها ارتباط مستقيم با نحوه طراحي قطعات داخلي شير دارد.در اغلب موارد اين طراحي بگونه اي انجام مي گيرد كه پس از شروع بازشدن شير اطمينان در اثر ازدياد فشار ، در اثر خاصيت (POP Action) اين عمل به سرعت تشديد شده تا زماني كه شير كاملا باز گردد شكل زير نشان دهنده عملكرد يك شير اطمينان مي باشد.

شيرهاي اطمينان بوسيله آزاد كردن مقداري ازسيال به واحد(يا به درون لاين)عمليات ايمن سازي را انجام مي دهند. شيرهاي فشار در جاهائيكه حداكثر فشار كاري بوجود مي ايند نصب مي گردند. درسيستمهاي توليدبخار ، شيرهاي اطمينان براي جلوگيري از افزايش فشار بر روي بويلر ها نصب مي گردند .
در ارتباط با شيرهاي اطمينان لازم است كه با اصطلاحاتي در اين زمينه بيشتر اشنا شويم:
Over Pressure
فشاري است كه شير اطمينان در وضعيت كاملا باز قرار مي گيرد وحداكثر ظرفيت تخليه خود را دارا مي باشد.واضح است كه اين فشار بالاتر از فشار نقطه تنظيم (Set Presure) مي باشد ومقدار ان با توجه به كاربردها واستانداردهاي مختلف ، متفاوت مي باشد.استاندارد BS 5500 اين مقدار اختلاف فشار را درمورد سيستمهاي بخار وگاز برابر حداكثر ده درصد فشار تنظيمي شير اطمينان در نظر مي گيرد.
شيرهاي اطمينان در فرايندهاي كه ممكن است در اثر ازدياد فشار به محصول ويا تحهيزات خسارتي وارد شود از بروز اين خسارات جلوگيري مي كنند.

Blowdown
مقدار اختلاف فشار پائين تر از نقطه تنظيم شير اطمينان است كه جهت بسته شدن كامل ومحكم شير اطمينان پس از باز شدن وسپس برگشت سيستم به فشار عادي مورد احتياج مي باشد .اين پارامتر به Reseat Differential نيز معروف است .ميزان Blowdown نيز طبق استاندارد مذكور حداكثر حدود %10 مي باشد.
مقادير Over pressure و Blowdown بسته به نوع سيستم وانتخاب طراح متغير بوده وبطور مثال مي تواند به ترتيب %3 و%4 انتخاب گردند.

Set Point
تنظيم مناسب نقطه عملكرد وباز شدن شير اطمينان ، اولا بدلايل ايمني مذكور وثانيا به منظور اطمينان از كاركرد شير اطمينان با حداقل صدا وهمچنين ممانعت از صدمه به شير اطمينان ضروري مي باشد .اين نقطه نبايد بيشتر از SOL/P يا محدوده فشار كاركرد ايمن تجهيزات باشد واز طرفي بايد بخاطر داشت كه تنظيم فشار آزاد سازي شير اطمينان روي فشار كمتر از SOL/P هيچگونه مزيتي به همراه نخواهد داشت وتنها باعث افزايش احتمالي دفعات باز شدن شير اطمينان وفرسوده شدن ان خواهدگشت.
ميزان تغييرات احتمالي در فشار سيستم به عنوان پارامتر ديگري است كه بايد در فشار تنظيم شير اطمينان در نظر گرفته شود تااز بازشدن بيمورد شير جلوگيري بعمل ايد.درصورت ناديده انگاشتن اين مورد ، شير اطمينان دربسياري از موارد در حالت نزديك به بسته كار خواهد نمودكه به اين پديده Simmering گفته مي شود.اين حالت در نتيجه نزديك بودن بيش از اندازه فشار سيستم به نقطه تنظيم روي ميدهد وعلاوه بر ايجادسروصدا ومسائل جانبي ، باعث ايجاد صدمه به قسمتهاي داخلي شير ودرنتيجه نشت دائمي آن خواهد شد.


Shut-off Margin
همانطور كه ذكر شد هنگامي كه فشار كاري سيستم ونقطه تنظيم شير اطمينان به هم نزديك باشند ، علاوه بر در نظر گرفتن تغييرات فشار احتمالي سيستم كه در بالا عنوان گرديد ، فشار اطميناني نيز بعنوان گارانتي كردن ومطمئن شدن از بسته ماندن كامل شير به فشار كاري سيتم اضافه مي گردد كه معمولا حدود 0.1 bar مي باشد.

انواع Safety Valve
Safety valve هاي متنوعي درصنعت متناسب با نوع كاركرد آنها وجود دارد .در استانداردها انواع مختلفي از اين safety valve ها تعريف گرديده است .
براي مثال استاندارد I و VIII از ASME براي انواع بويلر وكاربردهايي در مخازن تحت فشار مورد استفاده قرار مي گيرد.
بر پايه استاندارد ASME/ANSI PTC 25.3 تنوع تعدادي ازاين تجهيزات بصورت زير تعريف گرديده است:
LOW LIFT SAFETY VALVES
FULL LIFT SAFETY VALVES
FULL BORE SAFETY VALVES
BALANCES SAFETY VALVES
PILOT OPERATED PRESURE RELIEF VALVES
CONVENTIONAL SAFETY VALVES
LIFT SAFETY VALVES
HIGH LIFT SAFETY VALVES
PROPORTIONAL SAFETY VALVES
DIAPHRAGM SAFETY VALVES
BELLOWS SAFETY ALVES
CONTROLLED SAFETY VALVES
ASSISTED SAFETY VALVES
BALANCED PISTON SAFETY VALVES

واژه شير اطمينان (safety valve)وشير اطمينان فشار شكن(safety relief valve) اصطلاحاتي هستند كه جهت تشريح انواع متنوعي ازتجهيزات مرتبط با آزاد سازي فشار اضافي سيال در واحد مي باشند .
در همين رابطه محدوده وسيعي از ولوهاي مختلف كه براي كاركردهاي متنوعي جهت عمل در شرايط بحراني فشارمي باشند مورد استفاده قرار مي گيرند.
در بيشتر استانداردها تعاريف ويژه اي براي دو واژه شير اطمينان (safety valve) وشير اطمينان فشار شكن(safety relief valve) عنوان گرديده است.
در استانداردهاي امريكايي واروپايي تفاوتهايي بين اصطلاحات تجهيزات كاربردي از لحاظ معني وجود دارد .ازجمله اين تجهيزات مي توان به همين ولوها اشاره نمود.
در استانداردهاي اروپايي به اين قبيل ولوها اصطلاحا شير اطمينان (safety valve) ودراستانداردهاي امريكايي شير اطمينان فشار شكن(safety relief valve) گفته مي .
از جمله موارد ديگر اختلاف بين safety valve وrelief valve مي توان به اين نكته اشاره نمود كه در شيرهاي اطمينان فشار شكن ( safety valve ) به محض اينكه فشار عملكردي به فشار تنظيمي (set point) برسد سريعا اين شير عمل مي كند وتا هنگاميكه فشار عملكردي به پائين تر از فشار تنظيمي نرسد اين شير باز خواهد ماند.
ولي درشيرهاي اطمينان فشارشكن (safety relief valve) هنگاميكه فشار ورودي سيال تا نقطه فشار تنظيمي بالا برود اين ولو به تدريج باز كرده تا فشار را بالانس نمايد.
شير فشار شكن(relief valve) عموما براي سيالاتي كه غير قابل تراكم مي باشند مانند آب وروغن وغيره مورد استفاده قرار مي گيرد ولي شير اطمينان(safety valve) عموما براي سيالات تراكم پذير مورد استفاده قرار مي گيرد.
Relief Valve ها معمولا بصورت مداوم در حالت overpressure عمل مي كنند تا فشار سيستم را درحد نرمال تنظيم كنند.عمل كردن اين ولوها هيچگاه بصورت pop-action(عمل كردن ضربه اي) نمي باشد.


نصب safety valve
قبل از نصب يك safety valve بايد از تميز بودن داخل لاين اطمينان حاصل نمودلذا لازمست كه جهت جلوگيري نمودن از ورود ذرات به داخل safety valve وصدمه ديدن seat قبل از نصب safety alve ، لاين را توسط آب يا بخار كامل شستشو داد.
Safety valve بايد به گونه اي بر روي لاين نصب گردد كه كمترين نشتي بخار را داشته باشد وميعانات بخار دراين حالت در جهت خلاف جريان بخار ورودي به safety valve قرار نگيرند بعبارت ديگر بايد در هنگام نصب safety valve به اين نكته توجه داشت كه safety valve در بالاي لاين بخار نصب گردد.اگر safety valve در پائين لاين بخار نصب گردد ، بخارات تبديل به مايع شده ولاين ورودي به ولو را مي بندند.در شكلهاي زير نحوه نصب درست ونادرست يك safety valve نشان داده شده است.


تست SAFETY VALVS
در حالت كلي SAFETY VALVE ها بوسيله هوا، آب وبخار تست مي شوند.
در اكثر اوقات safety valve ها را درهواتست مي كنند وفرايند تست آن به شرح ذيل مي باشد:
اگر توسط هوا تست صورت گيرد بايد در قسمت خروجي SAFETY VALVE كه توسط يك فلنجي بسته شده ، لوله اي به قطر 6mm (همانند شكل) تعبيه گرددوانتهاي اين لوله در درون ظرف آب شفافي قرار بگيرد.دقت گردد كه اين لوله بايد به مقدار 12.7mm در درون آب قرار بگيرد(همانند شكل).درحالت تست ، تعداد حبابهاي خروجي از قسمت اين لوله شمرده مي شود.
عموما براي safety valve ها كه درزير مقدار 70 bar g تنظيم مي گردند تعداد حبابها بايد برابر 20 حباب باشد.

ball valve
شیرهای توپی ball valve

Wednesday, June 11, 2008


موتورهای جت
با توجه به پیشرفت و فناوری، صنعت حمل و نقل و مسافربری نیز در چندین دهه گذشته دچار تحولات شگرفی از جمله اختراع قطارهای سریع السیر، کشتی های مسافربری چندین طبقه همراه با امکانات فراوان و خاص هواپیما های مسافربری غول پیکر وهواپیماهایی با موتور ما فوق صوت که در یک دوره زمانی، از آنها به عنوان مسافر استفاده شده می توان بنام برد. ولی موتورهای جت چه هستند و چگونه کار می کنند یک موتور جت، بوسیله تخلیه سریع سیال ها برای ایجاد انرژی استفاده می کند، مطابق با قانون سوم حرکت نیوتن، این تعریف شامل موتورهای "توربو جت""توربو فن""راکترها""رم جت ها"و "جت های آبی"می شود. ولی به طور عادی و عامیانه کله جت برای "توربین های گازی"استفاده می شود که برای بوجود آوردن جریان سریعی از گازهای خروجی با سرعت بالا استفاده می شدند.تاریخچه ساخت موتور جت به صده اول بعد از میلاد مسیح بر می گردد وقتی که قهرمان اسکندریه، دستگاهی به نام Aeolipile را اختراع کرد. این دستگاه بوسیله دو لوله، بخار را با فشار به طریق یک شی کروی هدایت کرده و بخار بعث چرخیدن این شی کروی به دور محورش می گشت!نیروی محرکه جت ها درست در زمان اختراع راکت در قرن ۱۱ میلادی به وسیله چینی ها شناخته شد. خروجی راکت ها برای آتش بازی در آن زمان استفاده می شد، ولی به تدریج وارد ارتش شده و به عنوان سلاح از آن استفاده شد.ولی مشکلی که در مورد راکت ها وجود داشت، ناکامی بودن آنها برای صنایع هوایی بودو به جای آن موتورخای پیستونی از ۱۹۳۰ ، با انواع و اقسام مختلفشان تنها نوع از نیروی محرکه ای بود که برای طراحان هواپیما باقی مانده بود. ولی به تدریج مهندسان به یک حقیقت تلخ پی بردند و آن هم محدودیت موتورهای پیستونی بود و همین باعث ایجاد انگیزه برای استفاده از پرها و تورین ها شد و در این زمان بود که دانشمندان به فکر اختراع موتور مولد نیروی محرکه کاملا جدید یا بهبود عملکرد موتورهای پیستونی افتادند که در افزایش بازدهی موتورهای پیستونی را محدود دیده و در نهایت تلاشهایشان به اختراع موتورهای توربین گازی که اصطلاحاً موتور جت نامیده می شوند منجر شد که این اختراع مطمئنا ارزش کمتری از اولین پرواز برداران رایت نداشت.در ۱۹۲۹ یک کار آموز به نام Frank Whittle ایده هایی برای تولید توربو جت به مافوق خود ارائه کرد و او در سال ۱۹۳۰ به طور رسمی مخترع این وسیله شناخته شدا. این دستگاه شامل یک کمپرسور گریز از مرکز قطبی بود که از یک کمپرسور محوری دو مرحله ای تغذیه می کرد.آقای Whittle در سال ۱۹۳۷ اقدام به تست اولین توربو جت خود کرد در اوایل تست همه چیز درست به نظر می رسید، ولی پس از تست یک مشکل به وجود آمد و آن خاموش نشدن توربو جت بود و بالاخره معلوم شد که سوخت درون موتور چک می کند و همین باعث روشن ماندن موتور شده تا اینکه تمام سوخت به پایان برسد. همین مشکل باعث به تعویق افتادن ساخت و تکمیل این پروژه وی شد.موتورهای گریز از مرکز از زمان اختراعاتشان در حال تغییر و تحول و بهبود بازدهی بوده اند با پشرفت فن آوری، سرعت چرخش میله اصلی موتور افزایش یافته و قطر کمپرسور گریز از مرکز نیز کاهش یافته است. طول کم این موتورها، یکی از مزایای آنها به شمار می رفت.هیلکوپترها بهترین نمونه های استفاده از این موتورها هستند. ولی یکی از نکات منفی این موتورهای پره های آنهات که می تواند به اجسام خارجی زیان وارد کرده و در عین حال باعث سقوط هلیکوپتر نیز شود.موتورهای امگلیسی به طور وسیع در آمریکا مورد استفاده می شوند که یکی از مشهورترین این موتورها Nene نام داشت که ارتش شوروی سابق نیز از آنها استفاده می کرد.انواع و اقسام مختلفی از موتورهای جت وجود دارند که تمامی آنها نیروی محرکه خود را از خروجی پر سرعت خود می گیرند.در زیر چندین نوع از موتورهای جت را توضیح داده ایم.۱) "موتور جت آبی"آب را با فشار از خروجی های عقب خود خارج کرده و باعث حرکت و به جلو قایق می شود. این موتور قابلیت حرکت در آب های کم عمق را داراست و همچنین زیان رسیار کمی به محیط زیست می رساند، ولی بازدهی بسیار کمتری نسبت به پره ای دارد.۲) "ترمو جت "که اولین نسل از موتورهای جت با تنفس هوا بود که به صورت یک پیستون سور چارجر دار به همراه یک خروجی جت موجود بوده از مزایای این موتور به سرعت بیشتر خروج گازها از خروجی اگزوز کم قدرت بیشتر را در پی داشت می توان اشاره کرد ولی در ضمنت این موتورها بسیار سنگین بودند و همین یکی از معایت بزرگ آنها بود.۳) "توربو فن"که اولین نسل او کمرپرسورهایی بود که یک جریان هوای خروجی را در هسته موتور ایجاد می کردند. این موتورها صدای خیلی کمتری نسبت به موتورهای دیگر به علت بزرگی قطر خروجی خود ایجاد می کنند و به همین دلیل برای هواپیماهایی با سرعت کمتر از صوت از این موتور استفاده می شد ولی این موتور دارای معایبی همچون پیچیدگی زیاد، لوله های و میله ها، موتوری با قطر زیاد و ضرورت حمل تیغه های سنگین بوسیله آن را می توان نام برد. ولی این موتور همچنین مرسوم ترین نوع موتورهای مورد استفاده کنونی می باشند.این موتور هم اکنون در خط های هدایت، مثال بوینگ ۷۴۷ و جت های نظامی استفاده می شود.۴) "راکت"ککه قادر به پیمودن سرعت هایی برابر با چندین ماخ هستند. ورودی هوای غیر پیچیده، شریب تراکم بالا، خروجی ای به صورت ماورای صوت (۵ تا ۶ برابر سرعت صوت) و راحتی تست از مزایای راکت می باشند.۵) ""Ramjetکه هوای ورودی را فشرده کرده و با همان سرعت بیرون می راند. سبکی و سرعت بالا ازمزایا و نیاز بالا برای عملکرد درست و دارا بودن سرعت پایین به علت ضریب تراکم کم از معایب این موتور می باشد.۶) توربو شفت (Turboshaft) در واقع این یک موتور معمول جت نبوده و از توربین های گازی برای حرکت دادن میله ای که پره ها را می چرخاند استفاده می کند که هلیکوپترها با این موتور از زمین بلند می شوند. کارایی بالا در سرعت های پایین و میزان بالا قدرت به وزن از مزایا و سرعت محدود، صدای زیاد پیچیدگی سیستم انتقال نیرو از معایب این موتور می باشند.۷) "پالس جت"(Pulse) Jet ، در این موتور هوا در ابتدا فشرده شده، بعد نوبت به مرحله احتراق رسیده و نیرو تولید می کند. البته این احتراق متناوب بوده و مداوم نمی باشد و در بعضی از مدل ها نیز از سوپاپ استفاده شده است. از مزایای این موتور طراحی بسیار ساده و استفاده آسان از آن در هواپیماهای مدل می باشد.۸) "توربو راکت"(Turbo Racket) ، همانند توربو جت بوده ولی یکی مکنده اکسیژن به منظور ورود اکسیژن برای افزایش قدرت اضافه شده است.از مزایای این موتور به توانایی کار در ارتفاعات زیاد را می توان اشاره کرد.و اما نگاهی داشته باشیم به بعضی از اجزای موترهای جت (این اجزا در اغلب موتورهای جت مورد استفاده قرار می گیرند ) ورودی هوا، قسمت اصلی و اولیه یک موتور جت می باشد. ورودی هوا جز قسمت های ساده موتور یک جت می باشد که از یک دریچه برای ورود هوا تشکیل شده است. برای رسیدن هوا به کمرپرسور موتور و برای عمل فشرده سازی هوا، هواپیما باید با سرعت کمتر از سرعت صوت پرواز کند. در هواپیماهای مافوق صوت فشار هوای ورودی در ابتدا بوسیله یک مانع کم شده و سپس هوا وارد کمپرسور می شود .▪ کمرپرسور :کمپرسور از چندین طبقه تشکیل شده است که هر طبقه شامکیل چندین پره چرخنده و یک قسمت ثابت می باشد. هر چقدر که هوا بشتر درون کمپرسور حرکت کند، گرم تر و فشارش بیتر می شود. کمپرسور انرژی خود را از توربین می گیرد.▪ میله (شفت ) :میله قدرت توربین را به کمپرسور منتقل نی سازد و دارای بیشترین طول در درون می تور می باشد. در یک موتور، میله های موجود تا عدد ۳ نیز می رسند و هر کدام از آنها دارای سرعت جداگانه ای می باشند.محفظه احتراق جایست که سوخت با ادغام شدن با هوا احتراق پیدا می کند.▪ توربین :همچون یک آسیاب بادی عمل کرده و انرژی گازهای خروجی کمپرسور را استخارج و آزاد می نماید. این انرژی برای به حرکت در آوردن کمپرسور بوسیله میله، یافت ها به کار می رود. و همچنین هوای سرد آزده شده از کمپرسور برای سرد کردن تیغه ها و پره های توربینی برای جلوگیری از ذوب شدن آنها به کار می رود.فازل یا اگزوز، گازهای خروجی اگزوز با فشار اتمسفری از این دریچه ها خارج می شوند.▪ فازل ماورا صورت :مکنده خهای زیر صورت فشار سنج ورودی هوا قطعه ای غیر قابل حذف برای جت هایی با سرعت کمتر از صوت می باشد.ـ در هنگام سکون هواپیما، هوا از تمام جت ها ممکن می تواند وارد مکنده ها شود و حتی از پشت هواپیما ـ در سرعت های پایین وضعیت فرق کرده و هوا حتی به طور مستقیم می تواند وارد ورودی شده و هوای اطراف آن توانایی وارد شدن به ورودی را ندارند.ـ در سرعت های بالا (زیر دیوار صوتی ) هوای مستقیم که به مرکز ورودی نزدیک می شود، وارد ورودی شده، ولی در قسمت بالا و پایین ورودی هوا به طرف بیرون رانده شده و وارد مکنده نمی شود.در طراحی ورودی ها، مهندسان باید دقت بالایی برای طراحی آن برای وارد شدن کمترین فشار به ورودی را به کار گیرند.سیستم خنک کننده، تمامی موتورهای جت به گاز با حرارت بالا برای بهترین بازدهی نیاز دارند به طور معمول سوخت مناسب برای این هدف هیدروکربن و یا هیدروژن تشخیص داده شده اند. درجه حرارت احتراق در بعضیب موارد سوختی تا ۵۰۰۰ فارنهایت بالاتر از درجه ذوب اجسام نیز رسیده است.سیستم هدایتی، یک سیستم بسیار پیچیده در اغلب جت های توربین دار برای خنک کردن تیغه ها، صفحات و پره های توربین به کار می رود.خنک کردن تیغه باله های جت کار آسانی نیست، به خاطر اینکه خنک کردن آن قسمت تاثیر زیادی بر روی آن ندارد. یکی از راه های جلوگیری از گرم شدن تیغه ها به بکار گیری یک عایق برای پوشاندن آنهاست که جنس مخصوص این عایق مانع از گرم شدن آنها، مانع چکیدن روغن و باعث کنترل هوا برای خنک شدن می شود.خنک کردن اجزای موتور همچنین باعث کم شدن فرسودگی گرمایی در مواد می شود.و در نهایت، موتورهای جت ماشین های پیچیده ای هستند که انسان را قادر به جابجایی با سرعت چندین ماخ مینمایند. صنایع هوای تا جایی پیشرفت کردند که دست به ساخت هواپیمای مسافر بری جت درسال ۱۹۶۹ کرده اند. Concorde جت مسافر بری مشهور خطوط هدایتی فرانسه و انگلستان پروازهای خود را از تاریخ ۲۱ ژانویه ۱۹۷۶ آغاز کرده و پس از چندین صانحه هوایی دلخراش از خطوط هوایی کنار گذاشته شد و آخرین پرواز Concorde نیز در تاریخ ۲۶ نوامبر سال ۲۰۰۳ انجام گرفت. از کنکورد تنها ۲۰ فروند ساخته شد.